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Chapter 1

1.1 Calculate the electron and hole concentrations in p-type silicon with N , = 5x10'" em™ at 7 =280 K, 300 K, and
330 K.

From the footnote on page 4 n, = 7x10'* 792 exp(-6600/T), and for p-type material we have from (1.2.6) and (1.2.7)
that to a good approximation p, = N4 and n, = nf / N 4 . Applying these gives

T (K) | n; (em™) Fno (cm?)

-+ -

1.901x10° | 7223

280

1.015x10'" | 2.059x10% | s5.000x10'

—_—

8.649x10"0 | 1.496x10% | 5.000x10"

Note that the hole concentration p, is independent of temperature, but the intrinsic concentration n; , and therefore the
electron concentration n,, vary strongly with temperature, Note also that the above are quoted to 4 digits of precision,
however this is somewhat misleading as the constants for the intrinsic concentration are only provided to 1 and 2 digits of

precision.

1.2 This problem is intended to give an idea of the order of magnitude involved for the various quantities discussed in
Sec. 1.3, Consider the bar of Fig. 1.12 with a =100 gm, &= 10 gm, ¢=2 gm, and n-type silicon doping
concentration of 10"° em™: ¥ =1 V. Find the value of the conductivity, the mobility, the conductance, the sheet
resistance, the total mobile charge, the mobile charge per unit area, the field intensity, the drift velocity, the transit
time, and the current.

The magnitude of the electric field (“field intensity™) is £ =V/a=1/100 = 0.01 V/um, which is sufficiently small to justify
the use of the low field approximation. From Fig. 1.13 the bulk mobility of 10" em” n-type silicon is g =1350
em?/(V-s), the mobile charge concentration per unit volume n is from (1.2.4) just the donor concentration N = 10" em™,
The other required quantitics are (using g = 1.602 x 107" 1 -

quantity equation
conductivity (1.3.145) o = jigng 0.216 1/(Qcm)
+ 1 .
conductance (1.3.14a) G = o(bc/a) 4331x107° 1/Q
R & et |
sheet resistance Rs = R(b/a) = /(ugngc) 231x10* Qo
-——-—I + -
total mobile charge (1.3.4) Q = -ng(abc) -3.20x10-"3 C
mobile Ch.fgc dﬁl‘l&il}' (1.3.6) Q' o Q!(ﬂb) = =ngc -3.20 x ]0-16 Cfm'z
- —_— 4 + -
drift velocity (1.3.8) vy =pupk 1.35 pmins
_ + F -
transit time (1.3.3) r=afvy 74.1 ns
— S ! : !
current (1.3.1), (1.3.13) I=|0|/[r=GV 433 LA I
! |
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1.3 Prove that (1.3.23) is valid for the case of Fig. 1.15c¢.

Letting x and y be the directions associated with the dimensions a and b, respectively, with origin at the top left. The
electron concentration varies with position x but is constant with respect to y and through the depth of the bar. The total
charge is then the integral of the charge per unit area (the charge density) over the top area of the bar,

ba a
0= IIQ'dtdy=bIQ'dx.
o0 D

Because the charge density is assumed to vary linearly with x the integral is just the area of the trapezoid in Fig. 1.15¢, so

0'(0)+Q (a) :
7

Q=a

1.4 (a) Prove mathematically that (1.3.10) and (1.3.15) are valid even if the electron concentration varies with depth
as long as it is uniform horizontally.
(b) Prove mathematically that (1.3.20) and (1.3.22) are valid for the conditions stated in the paragraph following
(1.3.20).

(a) The solution is actually outlined in the footnote to the paragraph that follows (1.3.10). If y is position in the vertical

direction, measured from the top surface, consider a thin horizontal slice of thickness Ay centered about y, within which
n(y) is considered to be constant, From (1.3.5b), (1.3.8) and (1.3.9) we have

b
Al =g —V (gniy)ay)

for the current flowing through this slice, assuming that the flow is laminar and all electrons move horizontally. Allowing
the differences to become differentials, i.e. taking the limit as Ay — 0, and integrating from y=0 to y=c gives

:
b
/=g @ jqn(y)dy
d
0
but the magnitude of the charge per unit area JQJ' is just | gn{y)dy and substituting this into the above equation gives

(1.3.10) directly. From (1.3.13) G = I/V so(1.3.15) also holds in the case of nonuniform vertical doping.

(b) The solution for this is also outlined in footnote related to the paragraph following (1.3.20). Taking the same slice as in
part (a), (1.3.20) still holds for that slice so we have

drQ
AT = gty b L

where .&Q' = gn(y)Ay . In the limitas Ay — 0, integrating from =0 to y=c this gives

. .
1= upyb5 [anondy = ppdyp- 22

For each of the slices (1.3.21) still holds, so using this in (1.3.20) and integrating over the thickness of the slab still
therefore leads to (1.3.22).
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| B Verify (1.2.19).

(Ejy—E-)/(KT)

From (1.2.15a) p, = n;e and p, =n,-e(E‘2_EF)/ (KT) where the Fermi level is, by definition, constant in

equilibrium. Therefore

A E(E”-E,-z}/(kT)
P2

The band bending between points 1 and 2 is the same for the conduction, intrinsic, and valence band levels. The relation
(1.2.17) is still valid, as although specified for electrons it relates potential difference to band energy difference, therefore
Wo1 =Wy =W, =(E;; — E;2)/q . Using this relation and (1.2.12) we therefore have

_ELZEWZI/¢r
P2

which is just (1.2.19).

1.6 Calculate the contact potential of copper to n-type silicon with N, = 10" em? at 300 K, assuming that the work
function potential for copper is 4.5 V.

The solution follows the procedure of Example 1.1. For n-type silicon from (1.2.14b) and the formula for »; in the
footnote on page 4, ¢r =—¢, In(Np/n;)= —0.0259ln(10'7/1 015 x 10'0) =—0.416 V, therefore from (1.4.1)

E
bcus =Pw.s —Pwcu =X +——2§+ b — b cu =4.05+0.56-0.416~4.5 = -0.306 V

17 A voltmeter with both of its leads made out of metal X measures a voltage } across a battery. Show that if one of
the voltmeter’s leads is replaced with a different material Y, the electrostatic potential across the voltmeter will not
be affected.

Assume the battery voltage (potential difference) is V" and the battery is made of material type B, that the voltmeter leads
are directly connected to the battery, and that the voltmeter is made out of material type M. For common metal X leads for
the voltmeter, the potential difference pm sensed between the plus and minus terminals of the voltmeter is

Wom=0umx toxp+V+opx +oxm =V
Inserting the material } makes the loop potential equation become

Wom =Pmx +Pxp+V+0py +0y M
=Pmx +Ox BtV +opy +Py x +Oxy + 9y m
=fmx +Ox BtV +Ppx +0x M =F
hence the voltage sensed by the meter is independent of the material out of which its leads are made. Inserting some
intermediate material in any loop makes no difference in the potential balance around the loop, the contact potentials

between the material types at each end of the inserted material cancel, as in (1.4.4). The contact potential ¢,, 5 between
the meter and the battery is independent of how many material system changes there are between the meter and the battery.
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X
B+ M | e
Battery, S =V Voltmeter ‘: ¥ pm
B- M ‘ A et ol
T
X
Y
B I -
Battery, oy =V ‘ Voltmeter \: W pm
B'— M “_ e i
i | X
1.8 Assume that the two terminals of a voltage source are made out of different materials. Show that (1.4.9) and

(1.4.10) are valid if V... is defined as the voltage measured by an ideal voltmeter when it is attached to the
terminals of the source.

As in Prob. 1.7, insertion of a different material type does not affect the potential measured by a voltmeter as the work
function of an inserted material gets added when calculating the contact potential at one end and subtracted when

calculating the contact potential at the other end, and hence cancels when all of the contact potentials are summed. If the
leads of the source are materials X and Y and S denotes the material of the source, then the potential difference between

these is
Yy = Px.s +Vsource 25y = Vsource T{(0x —9@y)

which is just (1.4.9). If the voltmeter leads are made of material M then the potential measured by the voltmeter is
Wvoltmeter = @M .x +0x.5 +Vsource + 95,y + 0y M = Vource

which is (1.4.10).
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Battery, Sy =V ‘ :' V oy y Voltmeter v Wosoltmeter
S "f MJ ‘---"':
Y |&--7

1.9 Fora t\w.)-suded step pn junction with neither of its sides degenerate, prove that the built-in potential ég,, IS given
by ¢ In{N 4Np / n; ), and that the total length of the depletion region and the charge per unit area are given by the
formulas provided in the footnote to (1.5.11).

From (1.5.1), introducing (1.2.14a) and (1.2.14b), we have
Obi =Orp —Prn =0 INN 4 [n; )+ ¢, I(Np fn;) = ¢, (N 4N pfnl)

Note this only holds for temperatures where the materials remain extrinsic, so NV 4 >>n, and Ng >> n; .

Substituting (1.5.9) and (1.5.10) into (1.5.11) gives

& +¢; _E:(""Ddl +Nadz) Ve

The charge neutrality condition (1.5.6) gives the condition ( 1.5.7) which can be rearranged to form

N,
dy= =4 d,
Np

and substituting this into the previous equation and rearranging gives

2 'VA+NH 25’
: g

(N 4d5)

from which

2 N
dZ - : < AND Ve
NI q .MJ‘ '+ ND

and therefore from (1.5.7)
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' 28 .IV .Iv
dl - J 5 AYD wc

|N' D q 1\' A "' |~' D

Summing these individual depletion region distances gives the total length

2 N, N | | 2e N N N,+N 2e. N, +N
PPN e RN W w7y (U A e
q J\A+4~D hn .’\A q IVJ"‘J\'L’} i'\AIND q N“'.IVD

which is the result given in the footnote. The charge per unit area on the p side follows from (1.5.5) as

N’-“'N'D
NA+ND

Ve

0; = % ==gN 4d3 = -JZq&‘g

where we have used the value for d5 calculated above.

1.10  Plot the junction capacitance vs. reverse-bias voltage (from 0 to 2 V) for a silicon #'p junction of area 200 zm’
with N 4 =5x 10'7 cm™. Assume O =056 V.

Because the n side of the junction is heavily doped we can use the one-sided step junction expressions for reverse bias from
Sec. 1.5. The built-in potential is, from (1.5.1) and (1.2.14a), calculating », using the formula in the footnote on page 4 and
assuming a temperature of 300 K,

Bby = S5y =B = & In(N 4 [n,) +0.56.= 0.02586 In(5x10'7 /1.015x10'") = 1.02 v

The capacitance per unit area is given by (1.5.24), and multiplying this by the area gives

AJ2qe,N 4 L a1x107

. 2Vr+86i VR +8

This is plotted below.
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1.11 Consider a semiconductor in equilibrium. Express the fact that the roral current (drift plus diffusion components)
must be zero, by using (1.3.10%), (1.3.6) and (1.3.17) Applying (1.2.18), show that the Einstein relation (1.3.18)
results.

Using the differential form of (1.3.10), which is presented in a footnote to that equation, and substituting from (1.3.6),

gives

dy
lyripy = bc j——
anin = pgnlbe)=-

The diffusion component of current is, from (1.3.17),

dn

! itvrusion ™ —Dg\bc )—

diffusion D‘i{ ) pre
therefore the total current being zero gives the relation

d dn . d dn
ol = Tann + Lgittusion = #sq"[bfl-f- . Dtr(bf); = q(bf{ﬂa"-f - DE) =0

Given that the Fermi energy is constant in equilibrium, differentiating (1.2.15b) w.r.t. position gives

dn n dE;

— T e —— —

dx AT dx

Because the band bending in Fig. 1.8 must be the same for the conduction, valence, and intrinsic energy levels, the change
in £, is related to the change in potential  through (1.2.17), therefore, recalling (1.2.12),

.My gy
de kT dc @ dx

Alternatively, from (1.2.18) it is apparent that » is proportional to eV 3% and differentiating w.r.t. position also gives
the same result. Substituting this into the above expression for total current gives

dyg D
dc ¢ d

and for this to be zero for all values of electric field —dy /dx requires that D = @ up, which is just the Einstein
relationship (1.3.18).

1.12  Study the material on basic laws of electrostatics in Appendix A and provide detailed derivations for results (A.4),
(A.6), and (A.7) given there.

Consider the region of uniform charge density as shown in Fig. A.3. From (A.1) and (A.2) it is apparent that for any region
of uniform doping (and constant permittivity) the clectric field £ must vary linearly with position and the potential w
must vary quadratically with position.

Denoting here E as the electric field, then applying the results in Appendix A to the situation shown in the figures on the
next page, for which the charge density per unit volume is constant and of value p
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E[x)=—jpdx+£(xl}= "+E; s0 therefore E(x-;)=p—+EF
E E £

as shown in the middle figure. These results follow directly from integrating (A.1). Now we integrate again, based on
(A.2), to calculate the potential as a function of position

plx-x)*

2&

px—xy)

£

b | X
wix)=— IE{x}dx +w(x))=- j[ - Ep(x=x1)+w(x;) so therefore

ol o

+£F]dt+w(xl)-—

2 2
pd d

+ Erd as shown.

B
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This is result (A.7).

Now integrating between two points x; and x5, if the material is considered to be a parallelepiped of cross sectional area
A as shown in Fig. A.2, then the total charge Q in the parallelepiped between the two points is

Q= Ij‘p{x},-i dx

so the charge per unit area, as seen from the side, is then
Q X
g == ip(x)a‘x.
-
Integrating (A.1) between x; and x, and introducing this relation gives

E{II]-E(.I:I]=%'—2—

which is (A.4). If the material at position x; has permittivity &, different from the permittivity £, at position x; then
from (A.1) this needs to be modified to become

£2E(x2)—61E(x)) =03

which is (A.5). If there is no space charge density at some position x, so Q; 5 = 0, but the permittivity changes from &,
just left of x to £, just right of x|, then if we denote the field just to the left of x as E(x™ ) and the field just to the right
of x as E(x” ), then the above relation implies there is a discontinuity in the electric field at x ,

E(x*) &)

E(x") &
which is (A.6).
1.13  Provide detailed derivations for the results in Fig. 1.25.
These results are basic to anyone studying semiconductors and should be understood well. Again, from (A.1) and (A.2) it is
apparent that for any region of uniform doping, such as in the space-charge region around a pn junction, the electric field
E must vary linearly with position and the potential g must vary quadratically with position.
The junction, charge density, clectric field, and potential plots are shown below. We consider that the metallurgical
junction is as x =0 and will assume constant doping and “hard” edges to the depletion region around the junction. The
electric field is zero in the neutral semiconductor away from the space-charge (depletion) region around the junction,

Integrating (A.1) from x=-d| (the position of the left edge of the depletion region in the n-type material) we have, for
_dl <x<0
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and this achieves a peak value of E(0)=gN pd, /e, at x=0. Similarly, integrating (A.]) from x=0 into the depletion
region on the p-side of the junction, we have, for 0 < x < d,

gN 4% 9N pd,
Es Es

X
E(x)=-L quJ dx + E(0) = -
of B

From charge neutrality we also have
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N.Ddl = JVAdz

hence we can write E(0) = gN 4d5 [¢, therefore for 0 < x<d,

q.“lrd (dz ""I]
£, :

E(x)m

We now integrate the negative of the electric field to get potential as a function of position, from (A.2) for —d, <x<0

X X : 2
Np(x+d Np(x4d
w(x)=— _[E(x)dr+w(-d|)=- Iq'! D(: ) e + pi-dy)=-R2ESEULL g,
o 3 5 s

The potential drop on the » side of the junction is thus

gN pdf
26,

¢ =wl=d))-w(0)=

Similarly applying (A.2) for 0 x<d, gives

r tgN ((x—-d Npdd' q ,(F=d5)?
wix) == [Ex)ds+ o) = [£ AP NG vi-d,)- 228 _ DA i -
: 3 £, 26 28, 2¢e, 2,

The potential drop on the p side of the junction is thus

-
gN 4d3

= wilds)=w(0) =
@y = wld,y )= yw(0) 2,

and the built-in potential of the junction is then

ro g2 2
gN pdy gN ,d3
# 2¢&, 2e,

where the distances d; and o5 are calculated with no external bias applied to the junction.

If the potential difference, including a possible externally applied bias, across the junction is . then we have

_aNpdi  gN 4d3
2¢e, 2¢g,

Ve

and introducing in this NV pd; = NV 4d, we can solve for the individual distances,

dl - JZE;‘V{. .”_L . N dz =J2£’w¢- ‘VD
g Np(N,+Np) g NyN+Np)

and the total extent of the depletion regions is

+11=
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dy+dy = aEsVy N'AND I + l - 285 ¢ NaNp Na+Np - 25;“': Ny+Np
| : g Na+Np\Np Ny q Nya+Np\ NyNp q N Np *

The charge per unit area on ¢ither side has magnitude

> 2.0, NaN
IQl’q"“ndl=?NAdz=J e A8
d 1\(‘,".'}\'0

For a one-sided junction, where N >> N 4, the main extent of the depletion region is in the p side of the junction and it
has a spatial extent of

o aJZs,w“ I
) g Ny

The capacitance per unit area is

G1Q| = sts NA

dy, 24w,

C =

therefore for a one-sided abrupt junction the capacitance is determined by the doping on the lowly doped side of the
junction.

1.14  (a) Show that, within the weak inversion saturation region marked in Fig. 1.36a, I, is of the form /,exp(V5s /1))
and deduce the values for /, and V.
(b) Show that within the strong inversion saturation region marked in Fig. 1,365, /;; i1s of the form A (Veos = Vi )2
and deduce the values for &, and V.

(a) From Fig. 1.37a, the saturation current in the weak inversion region is, by eye, spaced linearly for the fixed increments
of Vg shown, Because the y-axis is loganithmic, this means that log(/p) depends linearly on Vg, which is equivalent to /j,
varying exponentially with Vs, Introducing /; as the weak inversion current that would theoretically be measured at Vs =0
(although this may not always be possible to measure directly) and the current can be written as /exp(Vi;s/V;) where
I/V; is the slope of log(/;) plotted versus Vgg. From the figure, the saturation current for V¢ =0.2 V is about and 2 nA
and for Vg =0.3 V is about and 30 nA, using these values gives V,~0.0369 V and /,~8.89 pA.

(b) From Fig. 1.375, the saturation current in strong inversion for different values of Vg can be seen to have a spacing that
increases as Vs increases; because the y-axis for this plot is linear, this means that the drain current is increasing at a rate
that is faster than lincar with Vs Assuming the dependence of the saturated /n on Vgs is polynomial in nature, it is
reasonable to approximate the dependence is quadratic, so /), = & (Vs < Vr )> . Later analysis will show that this form is
reasonable for long channel devices. By eye, the saturated currents for Vg values of 0.8 and 1.2 V are approximately 20
and 75 pA, respectively. Adding additional subscripts for these two bias points, from the quadratic model

Im _Vesi -7
I;pa  Vesa—Vr

and from the numerical values this gives V;=0.373 V, Calculation from either of the data points then gives ;=110 uA.

- 12 =
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